ourses » Fundamentals of Acoustics		Announcements	Course	Forum	Progress	Mentor
Init 5 - Wee	k 04: Transmissi	on line equation	ons 🖍			
Course outline	Week 4: Assign	ment 🖍				
How to access the portal?	The due date for submitting	this assignment has passed.	1.27)	Due on 2	2017-02-21,	23:59 IST.
Neek 01: ntroduction and Ferminology	1) Transmission Line equa	tion for pressure is $p(x, t)$ =	= Re[P(x,s)]	$[s)e^{st}]$. In g	general,P(x,s)) is: 1 point
Week 02: Concept Review	$P(x,s)=[P_+(s)-P(s)]$	$s)]e^{\frac{sx}{c}}$				
Veek 03: Wave quation	$P(x,s) = [P_+(s) + P(s)]$	$S)]e^{\frac{sx}{c}}$				
eek 04: ansmission line juations	$P(x,s) = P_+(s)e^{rac{-sx}{c}} + P_+(s)e^{rac{-sx}{c}}$	$P_{-}(s)e^{\frac{sx}{c}}$				
esson 1: Vaveguide	2) What is true regarding chara	cteristic impedance (Z_0) ?	dia			1 point
esson 2: ransmission Line quations -Part I	 It depends on nequency It is a complex quantity. It does not depend on bo 	bundary conditions.	ла.			
Lesson 3: Transmission Line Equations - Part II	3) Consider a closed tube with	a reciprocating piston at one e	nd as shown	in figure.		1 point
 Lesson 4: Transmission Line Equations - Part III 						
Lesson 5: Transmission Line Equations - Part IV						
Lesson 6: Transmission Line Equations - Part V	X=- L Velocity envelope of a velocity sta	anding wave formed inside the	X: tube is:	=0		
Quiz:Week4: Assignment	$\frac{P_1}{Z G_{-1}} Sin \frac{wx}{c}$					
Week 4: Assignment Solution	$\frac{P_1}{Z_0 Sin \frac{\omega}{c}} Sin \frac{\omega x}{c}$					
eek 05: 1-D aves	$\frac{P_1}{Z C r^{\omega}} Cos \frac{\omega x}{c}$					
eek 06: Power nd spherical aves	$\frac{Z_0 Cos \frac{\omega z}{c}}{\frac{P_1}{Z_0} Sin \frac{\omega x}{c}}$					
ek 07: Spherical res and rference	 Consider an open tube havin atmosphere. During sound propaging figure. Calculate the length D. 	g a reciprocating piston (sound gation inside the tube a standir	source) at o ng wave for pr	ne end. The essure will b	other end is op be generated as	pen to 1 point s shown in the

interference

W

5/15/2017

8)

One of the solutions of a 1D wave equation is u(x,t) = F(x-ct) + G(x+ct). Here, function G represented by G(x+ct).

- Forward travelling wave.
- Reflected wave.
- Standing wave.
- None of the above.

1 point

